A generalization of totally unimodular and network matrices

نویسنده

  • Joseph Epstein
چکیده

In this thesis we discuss possible generalizations of totally unimodular and network matrices. Our purpose is to introduce new classes of matrices that preserve the advantageous properties of these well-known matrices. In particular, our focus is on the polyhedral consequences of totally unimod­ ular matrices, namely we look for matrices that can ensure vertices that are scalable to an integral vector by an integer k. We argue that simply generalizing the determinantal structure of totally uni­ modular matrices does not suffice to achieve this goal and one has to extend the range of values the inverses of submatrices can contain. To this end, we define k-regular matrices. We show that k-regularity is a proper generalization of total unimodularity in polyhedral terms, as it guarantees the scalability of vertices. Moreover, we prove that the k-regularity of a matrix is necessary and sufficient for substituting mod-k cuts for rank-1 Chvdtal-Gomory cuts. In the second part of the thesis we introduce binet matrices, an extension of network matrices to bidirected graphs. We provide an algorithm to calculate the columns of a binet matrix using the underlying graphical structure. Using this method, we prove some results about binet matrices and demonstrate that several interesting classes of matrices are binet. We show that binet matrices are 2-regular, therefore they provide half-integral vertices for a polyhedron with a binet constraint matrix and integral right hand side vector. We also prove that optimization on such a polyhedron can be carried out very efficiently, as there exists an extension of the network simplex method for binet matrices. Furthermore, the integer optimization with binet matrices is equivalent to solving a matching problem. We also describe the connection of k-regular and binet matrices to other parts of combinatorial optimization, notably to matroid theory and regular vectorspaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bidirected generalization of network matrices

We define binet matrices, which furnish a direct generalization of totally unimodular network matrices and arise from the node-edge incidence matrices of bidirected graphs in the same way as the network matrices do from directed graphs. We develop the necessary theory, give binet representations for interesting sets of matrices, characterize totally unimodular binet matrices and discuss the rec...

متن کامل

A Generalization of Tutte's Characterization of Totally Unimodular Matrices

An integral square matrix A is called principally unimodular (PU if every nonsingular principal submatrix is unimodular (that is, has determinant \1). Principal unimodularity was originally studied with regard to skew-symmetric matrices; see [2, 4, 5]; here we consider symmetric matrices. Our main theorem is a generalization of Tutte's excluded minor characterization of totally unimodular matri...

متن کامل

On the representability of totally unimodular matrices on bidirected graphs

Seymour’s famous decomposition theorem for regular matroids states that any totally unimodular (TU) matrix can be constructed through a series of composition operations called k-sums starting from network matrices and their transposes and two compact representation matrices B1, B2 of a certain ten element matroid. Given that B1, B2 are binet matrices we examine the k-sums of network and binet m...

متن کامل

Lecture 4 — Total Unimodularity and Total Dual Integrality

Definition 1.1. A matrix A ∈ Zm×n is totally unimodular if the determinant of every square submatrix B ∈ Zk×k equals either −1, 0, or +1. Alternatively, by Cramer’s rule, A ∈ Zm×n is totally unimodular if every nonsingular submatrix B ∈ Zk×k has an integral inverse B−1 ∈ Zk×k. Recall: B−1 = 1 det B B ∗, where B∗ is the adjugate matrix (transpose of the matrix of cofactors) of B. One important c...

متن کامل

Enumerating Vertices of $0/1$-Polyhedra associated with $0/1$-Totally Unimodular Matrices

We give an incremental polynomial time algorithm for enumerating the vertices of any polyhedron P(A, 1 ̄ ) = {x ∈ R | Ax ≥ 1 ̄ , x ≥ 0 ̄ }, when A is a totally unimodular matrix. Our algorithm is based on decomposing the hypergraph transversal problem for unimodular hypergraphs using Seymour’s decomposition of totally unimodular matrices, and may be of independent interest.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002